
(d) Solve the equation $6 x^{6}-25 x^{5}+31 x^{4}-31 x^{2}+25 x-6=0$.
(e) If α, β, γ be the roots of the equation $x^{3}+q x+r=0(r \neq 0)$, find the equation whose roots are $\frac{\beta}{\gamma}+\frac{\gamma}{\beta}, \frac{\gamma}{\alpha}+\frac{\alpha}{\gamma}, \frac{\alpha}{\beta}+\frac{\beta}{\alpha}$.
2. (a) If α, β, γ be roots of the equation $x^{3}+p x^{2}+q x+r=0$, then find, in terms of p, q, r the value of $\sum \frac{1}{\alpha^{2} \beta}$.
(b) Porve that for any real roots a of the equation $x^{3}-1=0, i a$ is a root of the equation $x^{12}-1=0$.
(c) If α, β, γ be the roots are the cubic $x^{3}-9 x+9=0$, then show that $(\alpha-\beta)(\beta-\gamma)(\gamma-a)=\neq 27$
(d) Solve $x^{3}-6 x-9=0$, by Cardan's method.
(e) Solve the equation $x^{7}-1=0$. Deduce that $2 \cos \frac{2 \pi}{7}, 2 \cos \frac{4 \pi}{7}, 2 \cos \frac{8 \pi}{7}$ are the roots of the equation $t^{3}+t^{2}-2 t-1=0$.
3. (a) Find the condition that the equation $x^{3}+p x^{2}+q x+r=0$ may have two roots equal but opposite in sign.
(b) Use Descarte's Rule to discuss the nature of roots of the equation $x^{4}+q x^{2}+r x-t-0$, if q, r, t are positive numbers.
(c) Prove that $x^{n}-n q x+(n-1) r=0$ has a pair of equal roots if $q^{n}=r^{n-1}$ and discuss the nature of roots of this equation.
(d) Solve by Ferrari's method the equation $x^{4}-18 x^{2}+32 x-15=0$.
(e) Transform the equation $x^{3}-3 x^{2}+12 x+16=0$ into standard form and solve by Cardan's method.
4. (a) Find the number and position of the real roots of $x^{3}+x^{2}-2 x-1=0$.
(b) Form an equation whose roots are less by 2 than the roots of the equation $x^{3}-5 x^{2}+3 x-5=0$.
(c) Show that, a reciprocal equation of standard form can always be depressed to another of half of the roots of this equation.
(d) If α, β, γ are the roots of the equation $x^{3}+3 x+1=0$ find the equation whose roots are $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}, \frac{\beta}{\gamma}+\frac{\gamma}{\beta}$ and $\frac{\gamma}{\alpha}+\frac{\beta}{\gamma}$ and hence find the value of $\sum\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$.
(e) Reduce the reciprocal equation $x^{5}+x^{4}+x^{3}+x^{2}+x+1=0$ to its standard form and then solve it.

LOGIC AND SETS

Answer any $\boldsymbol{t} \boldsymbol{w} \boldsymbol{o}$ from the following questions :

1. (a) Write the negation of the following statement:
(i) $n+3 \geq 2$ for all $n \in N$.
(ii) Every complex number is a real number.
(b) What do you mean Conjuction and Disjuction?
(c) What do you mean by Principle Conjunctive normal form? Write complete CNF of 2 variables. Write the function.
(d) Prove that $\sqrt{2}$ is irrational by contradiction method.
(e) Prove that $(\sim q \wedge q) \rightarrow(\sim p \vee(\sim p \vee q)=\sim p \vee q$ without using truth table.
2. (a) Prove that $A-B=A \cap B^{\prime}$.
(b) Let S be a set containing three elements. How many different binary relations can be defined on S ?
(c) Let $D=\{1,2,3 \ldots 9\}$. Determine the truth value of the following statements.
(i) $(\forall x \in D) x+4<15$
(ii) $(\forall x \in D) x+4>15$
(iii) $(\forall x \in D) x+4 \leq 10$
(iv) $(\exists x \in D) x+4>15$
(d) Prove that equivalent using truth table
(i) $P \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$
(ii) $p \wedge(q \vee r) \equiv(p \wedge q) \vee(q \wedge r)$
(e) Prove that if a finite set S has n elements, then its power set $P(S)$ has 2^{n} elements.
3. (a) Give an example of anti-symmetric relation.
(b) Define domain and range of a relation.
(c) For the sets $A=\{1,3,5,7,9\}, B=\{2,4,6,8\}$ and $C=\{3,6,9\}$, verify the distributive laws.
(d) What is the partial order relation? Explain with two examples.
(e) Give an example of a relation on a set which is reflexive and symmetric but not transitive.
4. (a) Let A_{0}, A_{1} and A_{2} be three subsets of Z defined by $A_{i}=\{3 n+i: n \in Z\}$ for $i=0,1,2$. Show that A_{0}, A_{1} and A_{2} form a partition of the set Z.7
(b) Determine the nature of the following relation R on the set $Z: a R b$ if and only if $a-b$ is divisible by 5 .
(c) Let $A_{n}=\{x: x$ is a multiple of $n, n \in N\}$, Find $A_{2} \cup A_{7}$ and $A_{4} \cup A_{6}$. $2+4$

BOOLEAN ALGEBRA

Answer any $\boldsymbol{t} \boldsymbol{w} \boldsymbol{o}$ from the following questions :

1. (a) Show that in Boolean algebra B, the complement of each element is unique.
(b) Let $B=\{1,2,3,5,6,10,15,30\}$, the set of all positive divisors of 30 . Prove that B forms a Boolean algebra with respect to following compositions :

$$
\begin{aligned}
& a+b=\text { the 1.c.m. of } a \text { and } b ; \\
& a . b=\text { the g.c.d. of and } a \text { and } b
\end{aligned}
$$

and $\quad a^{\prime}=\frac{30}{a}$ for $a, b \in B$
(c) Prove that in a Boolean algebra $\left(B,+, .,{ }^{\prime}\right)$, + is associative .
2. (a) What is the concept of partial ordered relation ? Explain with two examples.
(b) Design a simple circuit connecting two wall switches and a light bulb in such a way that either switch can be used to controll the light independently.
(c) If (A, \leq), and (B, \leq) be two partially order sets then prove that $(A \times B, \leq)$ is partially order set with partial order ' \leq ' defined by $(a, b) \leq\left(a_{1}, b_{1}\right)$ if $a \leq a_{1}$ in A and $b \leq b_{1}$ in B. $6+8+6$
3. (a) Define modular and distributive lattice with two examples.
(b) Prove that in a Boolean algebra $B, a+b=b$ implies $a \cdot b=a$ and conversely.
(c) Prove that a lattice L is a modular if and only if

$$
x \leq y, \quad a \wedge x=a \wedge y, a \vee x=a \vee y
$$

Implies that

$$
x=y .
$$

(d) Prove that every chain is a distributive lattice.
4. (a) Discuss the concept of sub lattice and lattice homomorphism with an example.
(b) Prove that the set D_{12} of all factors of 12 under divisibility forms a lattice.
(c) Draw the Hasse diagram of the poset $(P(S), \subseteq)$, where $P(S)$ denotes the power set of $S=\{1,2,3\}$.
(d) Draw switching circuit which realize the Boolean expression :

$$
x^{\prime} y z+x^{\prime} y z^{\prime}+x y z
$$

